các bạn giải giúp mìnhvới
1,cho tam giác ABC vuông tại C tính \(\frac{SinA}{CosB}-\frac{tgA}{cotgB}\)
2, cho biết tam giác ABC vuông tại A , góc \(\alpha=\beta\) cạnh AB = 1 cạnh AC = 2 , CMR \(2cos\alpha=sin\alpha\)
3, cho biết \(tg75^o=2+\sqrt{3}\) tìm \(sin15^o\)
4, cho biết \(cos\alpha+sin\alpha=m\) tính \(P=\left|cos\alpha-sin\alpha\right|\) theo m
Rút gọn
\(A=\cos^2\alpha+cos^2\alpha+cot^2\alpha\)
\(B=\sin^2\alpha+sin^2\alpha\cdot tan^2\alpha\)
\(C=\frac{2cos^2\alpha-1}{\sin\alpha+cos^2\alpha}\)
Chứng minh các công thức sau :
\(Tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(Cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)
\(sin^2\alpha+cos^2\alpha=1\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(1+cos^2\alpha=\dfrac{1}{sin^2\alpha}\)
\(cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
cho M(1;1-cosα), N(3;4). Tính OM,MN và tìm GTLN, GTNN vủa biểu thức y=\(\sqrt{cos^2\alpha-2cos.\alpha+2}+\sqrt{cos^2\alpha+6cos.\alpha+13}\)
Rút gọn biểu thức sau
A=2cos2α-1/sinα+cosα
Mik cần gấp
Cho tam giác ABC vuông tại A, góc C = \(\alpha< 45^o\) . Chứng minh rằng:
\(tan2\alpha=\frac{2.tan\alpha}{1-tan^2\alpha}\)
CMR: Với mọi góc nhọn \(\alpha\) ta có :
\(a,\sin^2\alpha+\cos^2\alpha=1\)
\(b,\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(c,\tan^2\alpha+1=\frac{1}{\cos^2\alpha}\)
bài 1
a) Biết tan \(\alpha=\sqrt{3}\) hãy tính sin \(\alpha\) , cos \(\alpha\) , cot \(\alpha\)
b) hãy tính tan\(\alpha\) biết sin\(\alpha=\dfrac{15}{17}\)
bài 2 : cho \(\alpha\) là góc nhọn bất kì. CMR biểu thức sau khong phụ thuộc vào \(\alpha\)
A = (sin \(\alpha+cos\alpha\))\(^2\) + \(\left(\sin\alpha-\cos\alpha\right)^2+2\)
2/ CMR
a)1 + tan2α = \(\frac{1}{cos^2a}\)
b) 1 + cos2α=1/sin2α