Cho biểu thức:
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}-5};B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\), \(x\ge0,x\ne1,x\ne25.\)
a) Chứng minh rằng \(B=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\).
b) Tính giá trị của A khi x = 49.
c) Tìm giá trị của x để B > 1.
d) So sánh \(C=\left(A.B+\dfrac{x-5}{\sqrt{x}-5}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}}\) với 3 \(\left(x>0,x\ne1,x\ne25\right)\)
Chứng minh đẳng thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\left(x\ge0,y\ge0,x^2+y^2\ne0\right)\)
b) \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\left(a\ge0,a\ne1\right)\)
c) \(\sqrt{x+2\sqrt{x-2}-1}\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)=\sqrt{x}+\sqrt{3}\left(x\ge2,x\ne3\right)\)
A= \(\dfrac{\sqrt{x}+7}{x-1}\) ĐK: \(x\ge0,x\ne1\)
B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
Tìm các giá trị nguyên của x để biểu thứ P=A.B có giá trị luôn
Cho biểu thức \(A=\left(\dfrac{2}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{4}{\sqrt{x}+1}\right)\)
a/ Rút gọn A với \(x\ge0,x\ne1\)
b/ Tìm x để A < 0
c/ Tìm số nguyên x để A có giá trị nguyên
A=\(\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\) và B=\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\) ( với \(x\ge0;x\ne1\))
a) Rút gọn B
b) Tìm các giá trị của m để A.B=m có nghiệm
Giúp mình câu b với ạ!!!
Cho biểu thức M= \(\left(\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}+\sqrt{a}\right).\dfrac{1}{\sqrt{a}+1}\)Với ( \(a\ge0,a\ne1\))a) Rút gọn biểu thức Mb) Tính giá trị của M tại a = 2020-2\(\sqrt{2019}\)
a)Chứng minh rằng \(\left[\frac{1-x\sqrt{x}}{1-\sqrt{x}}\right].\left[\frac{1-\sqrt{x}}{1-x}\right]^2=1\)với \(x\ge0\)và \(x\ne1\)
b)So sánh \(\sqrt{2012}-\sqrt{2011}\)và \(\sqrt{2011}-\sqrt{2010}\)
c)Rút gọn biểu thức A=\(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\) với \(x\ge0,y\ge0,x\ne y\)
d)Tìm giá trị lớn nhất của biểu thức M=\(\sqrt{x-1}+\sqrt{9-x}\)
Rút gọn:
a) \(\frac{a-b}{\sqrt{a}-\sqrt{b}}\)-\(\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(\(a\ge0\),\(b\ge0\),\(a\ne b\))
b)\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)\(\left(a>0,b>0,a\ne b\right)\)
C)\(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)\(\left(a>0,a\ne1,a\ne4\right)\)
d)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\)\(\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)\(\left(a>0,b>0,a\ne b\right)\)
e)\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right)\):\(\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)\(\left(x>0,x\ne9\right)\)
Cho các biểu thức A = \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right)\) và biểu thức B = \(\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\) với \(x\ge0;x\ne1\)
a.Tính giá trị của B khi x = 4
b.Rút gọn biểu thức M = A.B
c.Tìm k để phương trình M = k có nghiệm