\(S=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}+\dfrac{1}{d^2+1}\)
\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)
\(tương\) \(tự\) \(với:\dfrac{1}{b^2+1};\dfrac{1}{c^2+1};\dfrac{1}{d^2+1}\)
\(\Rightarrow S\ge1-\dfrac{a}{2}+1-\dfrac{b}{2}+1-\dfrac{c}{2}+1-\dfrac{d}{2}=4-\left(\dfrac{a+b+c+d}{2}\right)=4-\dfrac{4}{2}=2\)
\(\Rightarrow min_S=2\Leftrightarrow a=b=c=d=1\)