Ta có:
\(\dfrac{a}{c}=\dfrac{c}{b}\) \(\Rightarrow\) \(\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}\) \(=\dfrac{a^2+c^2}{c^2+b^2}\)
\(\dfrac{a}{b}=\dfrac{a}{c}\times\dfrac{c}{b}=\left(\dfrac{a}{c}\right)^2\)
Mà \(\dfrac{a^2+c^2}{b^2+c^2}=\left(\dfrac{a}{c}\right)^2=\dfrac{a}{b}\)
Vậy \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\) (ĐPCM)