Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
George H. Dalton

Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR \(\dfrac{\left(a+c\right)^2}{\left(a-c\right)^2}=\dfrac{\left(b+d\right)^2}{\left(b-d\right)^2}\)

๖ۣۜĐặng♥๖ۣۜQuý
10 tháng 4 2018 lúc 19:16

giả sử điều phải chứng minh là đúng thì:

\(\dfrac{\left(a+c\right)^2}{\left(a-c\right)^2}=\dfrac{\left(b+d\right)^2}{\left(b-d\right)^2}\\ \Rightarrow\left[\left(a+c\right)\left(b-d\right)\right]^2=\left[\left(a-c\right)\left(b+d\right)\right]^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2=\left(ab+ad-bc-cd\right)^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2-\left(ab+ad-bc-cd\right)^2=0\\ \Leftrightarrow\left(ab+bc-ad-cd+ab+ad-bc-cd\right)\left(ab+bc-ad-cd-ab-ad+bc+cd\right)=0\\ \Leftrightarrow\left(2ab-2cd\right)\left(2bc-2ad\right)=0\\ \Leftrightarrow\left(ab-cd\right)\left(bc-ad\right)=0\\ \Rightarrow\left[{}\begin{matrix}ab-cd=0\\bc-ad=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ab=cd\\bc=ad\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{c}=\dfrac{d}{b}\\\dfrac{a}{b}=\dfrac{c}{d}\left(đúng\right)\end{matrix}\right.\)

do đó điều phải chứng minh là đúng


Các câu hỏi tương tự
Hồng Hà Thị
Xem chi tiết
amano ichigo
Xem chi tiết
Phạm Ngọc Trâm Anh
Xem chi tiết
dream XD
Xem chi tiết
Phạm Hồng Ngọc
Xem chi tiết
Xem chi tiết
Nguyễn Vũ Hoàng
Xem chi tiết
Trương Nhật Quang
Xem chi tiết
mr. killer
Xem chi tiết