\(\left(a+b+c\right)^3=a^3+b^3+c^3\)
=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=a^3+b^3+c^3\)
=>\(3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(T=\left(a+b\right)\cdot\left(b+c\right)^2\cdot\left(c+a\right)^2\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\cdot\left(b+c\right)\left(a+c\right)\)
\(=0\cdot\left(b+c\right)\left(a+c\right)\)
=0