Áp dụng bất đẳng thức Cô - si ta có:
\(\left(p-a\right)\left(p-b\right)\le\dfrac{(p-a+p-b)^2}{4}=\dfrac{\left(2p-a-b\right)^2}{4}=\dfrac{c^2}{4}\)
\(\left(p-a\right)\left(p-c\right)\le\dfrac{(p-a+p-c)^2}{4}=\dfrac{\left(2p-a-c\right)^2}{4}=\dfrac{b^2}{4}\)
\(\left(p-b\right)\left(p-c\right)\le\dfrac{(p-b+p-c)^2}{4}=\dfrac{\left(2p-b-c\right)^2}{4}=\dfrac{a^2}{4}\)
\(\Rightarrow\left[\left(p-a\right)\left(p-b\right)\left(p-c\right)\right]^2\le\dfrac{a^2b^2c^2}{64}\)
\(\Leftrightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\dfrac{abc}{8}\) (đpcm)