Cho a+b+c = 1 và a,b,c > 0. Cmr: ab + bc + ac - abc \(\le\) \(\dfrac{8}{27}\)
Cho a,b,c\(\ge0\), a+b+c=1
CMR: \(0\le ab+ac+bc-2abc\le\dfrac{7}{27}\)
Cho a, b, c>0 và a+b+c\(\ge3\)
Cmr:
\(\dfrac{a^2}{a+\sqrt{bc}}+\dfrac{b^2}{b+\sqrt{ac}}+\dfrac{c^2}{c+\sqrt{ab}}\ge\dfrac{3}{2}\)
Cho a,b,c>0 CMR :
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}\le\dfrac{a+b+c}{2}\)
2>Cho tam giác ABC có AB=1, góc A = 1050, góc B = 600. Trên cạnh BC lấy điểm E sao cho BE = 1. Vẽ ED//AB ( D thuộc AB ). CMR: \(\dfrac{1}{AC^2}+\dfrac{1}{AD^2}=\dfrac{3}{4}\)
Cho \(a;b;c\ge0:a^2+b^2+c^2=1\)
CMR: \(\dfrac{c}{1+ab}+\dfrac{b}{1+ac}+\dfrac{a}{1+bc}\ge1\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho a, b, c > 0 thoã mãn: ab + bc + ca = 3. CMR: \(\dfrac{1}{1+a^2\left(b+c\right)}+\dfrac{1}{1+b^2\left(c+a\right)}+\dfrac{1}{1+c^2\left(a+b\right)}\le\dfrac{3}{abc}\)
a.b>= 0 thoả mãn a+b+c = 1 CMR
\(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ac}{b+1}< =\dfrac{1}{4}\)