\(ab=c\cdot c\)
nên a/c=c/b
Đặt a/c=c/b=k
=>a=ck; c=bk
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{c^2k^2+c^2}{b^2+b^2k^2}=\dfrac{c^2}{b^2}=k^2\)
\(\dfrac{a}{b}=\dfrac{ck}{\dfrac{c}{k}}=ck\cdot\dfrac{k}{c}=k^2\)
Do đó: \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)