Lời giải:
Đặt \(\left\{\begin{matrix} \log_ab=x\\ \log_bc=y\\ \log_ca=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \log_ba=\frac{1}{x}\\ \log_cb=\frac{1}{y}\\ \log_ac=\frac{1}{z}\end{matrix}\right. \). và \(xyz=1\)
Do \(a,b,c>1\Rightarrow x,y,z>0\)
Ta có:
\(P=\log_a(bc)+\log_b(ac)+4\log_c(ab)\)
\(=\log_ab+\log_ac+\log_ba+\log_bc+4\log_ca+4\log_cb\)
\(=x+\frac{1}{z}+\frac{1}{x}+y+4z+\frac{4}{y}\)
Áp dụng BĐT Cô-si cho các số dương:
\(\left\{\begin{matrix} x+\frac{1}{x}\geq 2\sqrt{1}=2\\ y+\frac{4}{y}\geq 2\sqrt{4}=4\\ \frac{1}{z}+4z\geq 2\sqrt{4}=4\end{matrix}\right.\) \(\Rightarrow P\geq 2+4+4=10\)
\(\Rightarrow m=10\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\rightarrow x=1\\ y=\frac{4}{y}\rightarrow y=2\\ \frac{1}{z}=4z\rightarrow z=\frac{1}{2}\end{matrix}\right.\) (thỏa mãn)
Suy ra \(n=\log_bc=y=2\)
\(\Rightarrow m+n=12\)