Mình đặt bằng A cho dễ tính nha
A=a/b+a/c+b/c+b/a+c/b+c/a
Áp dụng bst cosi ta có:
a/b+b/a\(\ge\)2√(a.b/b.a)=2
Tươn tự ta chứng minh được
a/c+c/a\(\ge\)2
b/c+c/b\(\ge\)2
Suy ra
A\(\ge\)6
Mình đặt bằng A cho dễ tính nha
A=a/b+a/c+b/c+b/a+c/b+c/a
Áp dụng bst cosi ta có:
a/b+b/a\(\ge\)2√(a.b/b.a)=2
Tươn tự ta chứng minh được
a/c+c/a\(\ge\)2
b/c+c/b\(\ge\)2
Suy ra
A\(\ge\)6
Cho a, b, c > 0. Chứng minh: \(\left(a+\dfrac{1}{b}-1\right)\left(b+\dfrac{1}{c}-1\right)+\left(b+\dfrac{1}{c}-1\right)\left(c+\dfrac{1}{a}-1\right)+\left(c+\dfrac{1}{a}-1\right)\left(a+\dfrac{1}{b}-1\right)\ge3\)
a, Cho a,b là số thực dương và ab<1. Chứng minh \(\dfrac{1}{1+a}+\dfrac{1}{1+b}\le\dfrac{2}{1+\sqrt{ab}}\)
b, Cho a,b,c là các số thực dương thõa mãn abc=1. Chứng minh \(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)
cho a,b,c>0, CMR:
\(\left(a+b+\dfrac{1}{4}\right)^2+\left(b+c+\dfrac{1}{4}\right)^2+\left(c+a+\dfrac{1}{4}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
Cho a, b, c > 0 thoả mãn: \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). Chứng minh rằng: \(\dfrac{\sqrt{a}}{a+1}+\dfrac{\sqrt{b}}{b+1}+\dfrac{\sqrt{c}}{c+1}=\dfrac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Cho a,b,c >0 và abc =1. CMR:
\(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)
Cho a,b,c > 0 và: a + b + c = 1. Chứng minh:
\(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4}\)
a;b;c>0 / abc=1. CMR:
\(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)
cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\)
Cho a,b,c>0 thỏa mãn : \(ab+bc+ca=0\)
C/m: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3+\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\dfrac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\dfrac{\left(c+a\right)\left(c+b\right)}{c^2}}\)