Cho a,b,c >0 với a+b+c=3
cho 3 số thực a,b,c với a khác 0 sao cho ax^2+bx+c>=0.tìm giá trị nhỏ nhất của p=(2/b^2-2b+2) +a^2+c^2-b+1
Cho a, b, c > 0. Chứng minh rằng: \(\dfrac{\left(a+b+c\right)^2}{abc}+\dfrac{18\sqrt{3}}{\sqrt{a^2+b^2+c^2}}\ge\dfrac{81}{a+b+c}\)
Cho các số thực a, b , c khác 0 và thỏa mãn a + b + c = 0
chứng minh đẳng thức \(\dfrac{a^2}{a^2-b^2-c^2}\) + \(\dfrac{b^2}{b^2-c^2-a^2}\)+\(\dfrac{c^2}{c^2-a^2-b^2}\) = 0
Cho a, b, c > 0 thỏa mãn ab + bc + ca = 3. Chứng minh rằng: \(\dfrac{1}{1+a^2\left(b+c\right)}+\dfrac{1}{1+b^2\left(a+c\right)}+\dfrac{1}{1+c^2\left(a+b\right)}\le\dfrac{1}{abc}\)
Cho \(a,b,c>0\). Chứng minh \(\dfrac{\left(1+a^2b\right)\left(1+b^2\right)}{\left(a^2-a+1\right)\left(b^3+1\right)}\le2\)
Cho a, b, c > 0 thỏa mãn a.b.c=1. Chứng minh rằng: \(\frac{bc}{a^2b+a^2c}+\frac{ac}{b^2a+b^2c}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
cho a>0,b>0,c>0. chứng minh : \(a^2\left(1+c^2\right)+c^2\left(1+b^2\right)+b^2\left(1+a^2\right)\ge6abc\)
Cho a, b, c là các số thực thỏa mãn a > 0, b > 0 và \(f\left(x\right)=ax^2+bx+c\ge0\). . Tìm Min \(Q=\dfrac{4a+c}{b}\)