Cho a, b, c > 0 thỏa mãn ab + bc + ca = 3. Chứng minh rằng: \(\dfrac{1}{1+a^2\left(b+c\right)}+\dfrac{1}{1+b^2\left(a+c\right)}+\dfrac{1}{1+c^2\left(a+b\right)}\le\dfrac{1}{abc}\)
Cho a,b,c>0 thỏa mãn :ab+bc+ca=abc Chứng minh rằng:
\(\sqrt{\dfrac{b^2+2a^2}{ab}}+\sqrt{\dfrac{c^2+2b^2}{bc}}+\sqrt{\dfrac{a^2+2c^2}{ac}}\ge\sqrt{3}\)
mọi ngừoi giúp em với ạ, em chưa học BĐT Minkowski nên giải cách của lớp 9 được không ạ?
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Cho a, b, c > . Chứng minh rằng:
a, \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
b, \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
Cho \(a,b,c>0\). Chứng minh \(\dfrac{\left(1+a^2b\right)\left(1+b^2\right)}{\left(a^2-a+1\right)\left(b^3+1\right)}\le2\)
Bất đẳng thức nào sau đây luôn đúng với giá trị của biến, giải thích
A. \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2+b^2+c^2\right)\)
B. \(a^2+b^2\ge3ab\)
C. \(x^3+y^3+1\ge3xy\)
D. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
Cho a, b, c > 0. Tìm GTNN của: \(P=\dfrac{a\left(1+b^2\right)}{bc}+\dfrac{b\left(1+c^2\right)}{ca}+\dfrac{c\left(1+a^2\right)}{ab}\)
Cho a\(\ge\)3; b\(\ge\)4; c\(\ge\)2. Tìm giá trị lớn nhất của bểu thức A=\(\dfrac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Bài 1: Hiệu của hai số dương là 22. Biết số này gấp đôi số kia. Tìm hai số dương?
Bài 2: Phương trình nào là phương trình bậc nhất một ẩn? Vì sao?
A. \(\dfrac{x}{5}=0\) B. \(\dfrac{5}{x}=0\)
C. \(x+x^2=0\) D. \(0x+5=0\)
Bài 3: Cho a.b.c=1 và \(a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) . Chứng minh rằng: \(\left(a-1\right).\left(b-1\right).\left(c-1\right)>0\)
Bài 4: Hai lớp 9A và 9B có 80 học sinh. Trong đợt góp sách ủng hộ mỗi em lớp 9A góp 2 quyển và mỗi em lớp 9B góp 3 quyển nên cả hai lớp góp được 198 quyển. Tìm số học sinh mỗi lớp.
Bài 5: Tìm giá trị nhỏ nhất: \(\dfrac{27-12x}{x^2+9}\)
Bài 6: Cho 2 số a và b thỏa mãn: \(a\ge1,b\ge1.\) Chứng minh : \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
Bài 7: Chứng minh rằng: \(a^4+b^4+c^4+d^4\ge4abcd\)