Cho a, b, c>0 và a+b+c\(\ge3\)
Cmr:
\(\dfrac{a^2}{a+\sqrt{bc}}+\dfrac{b^2}{b+\sqrt{ac}}+\dfrac{c^2}{c+\sqrt{ab}}\ge\dfrac{3}{2}\)
Cho a,b,c là các số thực dương. CMR
\(\dfrac{a^5}{a^2+ab+b^2}+\dfrac{b^5}{b^2+bc+c^2}+\dfrac{c^5}{c^2+ca+a^2}\ge\dfrac{a^3+b^3+c^3}{3}\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho a, b, c > 0 và \(a+b+c=1\). Chứng minh: \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\ge\dfrac{1}{3}\)
Cho a, b, c > 0 và ab + bc + ca = 1.
CMR : \(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}>\dfrac{1}{2}\)
Cho các số dương a,b,c thỏa mãn ab + bc + ca = 3. CMR:
\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\)
giả sử a,b,c là các số thực dương CMR
\(\dfrac{b^2c^3}{a^2\left(b+c\right)^3}+\dfrac{c^2a^3}{b^2\left(a+c\right)^3}+\dfrac{a^2c^3}{c^2\left(a+b\right)^3}\ge\dfrac{9abc}{4\left(3abc+ab^2+bc^2+ca^2\right)}\)
Cho a,b, c là các số thực dương. CMR:
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{a+b+c}{3}\)
Cho a+b+c=0 và a,b,c≠0.CMR: \(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=-\dfrac{3}{2}\)