P/s:Thiếu đề và sai đề
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{c+a-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+c+a-b+b+c-a}{c+a+b}=\dfrac{a+b+c+\left(a-a\right)+\left(b-b\right)+\left(c-c\right)}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
Tương đương với: \(\left\{{}\begin{matrix}\dfrac{a+b-c}{c}=1\\\dfrac{c+a-b}{b}=1\\\dfrac{b+c-a}{a}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b-c=c\\c+a-b=b\\b+c-a=a\end{matrix}\right.\)
Thay vào bài toán ta có:
\(P=\left(\dfrac{a+b}{a}\right)\left(\dfrac{b+c}{b}\right)\left(\dfrac{c+a}{c}\right)\)
\(P=\left(\dfrac{b+c-a+c+a-b}{a}\right)\left(\dfrac{c+a-b+a+b-c}{b}\right)\left(\dfrac{a+b-c+b+c-a}{c}\right)\)\(\dfrac{2c}{a}.\dfrac{2a}{b}.\dfrac{2b}{c}=\dfrac{8abc}{abc}=8\)