Lời giải:
TH1: $a+b+c=0$
Khi đó: \(a+b=-c; b+c=-a; c+a=-b\)
\(\Rightarrow M=\frac{(-c)(-a)(-b)}{abc}=\frac{-abc}{abc}=-1\)
TH2: \(a+b+c\neq 0\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow \left\{\begin{matrix} a+b-c=c\\ a-b+c=b\\ -a+b+c=a\end{matrix}\right.\Rightarrow a+b=2c; a+c=2b; b+c=2a\)
\(\Rightarrow M=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)
Ta có:
\(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\)
\(=\dfrac{a+b-c+a-b+c-a+b+c}{a+b+c}\)
\(=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a+b-c}{c}=1\\\dfrac{a-b+c}{b}=1\\\dfrac{-a+b+c}{a}=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)(1)
Thay (1) vào M ta được
\(M=\dfrac{2c.2a.2b}{abc}=\dfrac{8abc}{abc}=8\)