Có \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
ADTCDTSBN ta có:
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b+b+c+c+a}{c+a+b}\)
\(=\dfrac{2a+2b+2c}{a+b+c}=2\)
Do đó: \(\dfrac{a+b}{c}=2=>a+b=2c\)
\(\dfrac{b+c}{a}=2=>b+c=2a\)
\(\dfrac{c+a}{b}=2=>c+a=2b\)
Có: P=\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
P=\(\dfrac{b+a}{b}.\dfrac{c+b}{c}=\dfrac{a+c}{a}\)
P=\(\dfrac{b+a}{c}.\dfrac{c+b}{a}=\dfrac{a+c}{b}\)
P=\(\dfrac{2c}{c}.\dfrac{2a}{a}=\dfrac{2b}{b}\)
P=2.2.2=8