cho \(\dfrac{a}{b}=\dfrac{c}{d}\left(a,b,c,d\ne0\right)\) chung minh rang
a ,\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b ,\(\dfrac{2a+5b}{3a-4d}=\dfrac{2c+5d}{3c-4d}\)
giup minh nhe minh dang can gap
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right).\) Chứng minh rằng:
\(\dfrac{11a+17b}{3a-4b}=\dfrac{11c+17d}{3c-4d}\)
Cho tỉ lệ thức \(\dfrac{2a+13b}{3a-7b}=\dfrac{2x+13d}{3c-7d}\)
Chứng minh rằng \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (b, d ≠ 0) ta suy ra được các tỉ lệ thức:
a/ \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b/ \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
c/ \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
d/ \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
e/ \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)
f/ \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
chứng minh rằng: Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
mọi người ơi giúp mik với ai làm đc mik tick cho
Cho \(\dfrac{\text{a}}{b}=\dfrac{c}{d}.CM\)
\(\dfrac{3\text{a}+5b}{3\text{a}-5b}=\dfrac{3c+5d}{3c-5d}\)
\(\left(\dfrac{\text{a}+b}{c+d}\right)^2=\dfrac{\text{a}^2+b^2}{c^2+d^2}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR\)
a, \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b, \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
c, \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\). Chứng minh rằng:
a) \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng ta có tỉ lệ thức sau: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)