Bài 7: Tỉ lệ thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Hải Yến

Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng ta có tỉ lệ thức sau: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

Sakura Nguyen
2 tháng 9 2017 lúc 23:02

Theo đề bài, ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\left(\dfrac{a+b}{c+d}\right)^2\)(*)
=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{a^2+b^2}{c^2+d^2}\)(**)
Từ (*) và (**) suy ra:
\(\left(\dfrac{a+b}{c+d}\right)^2\)=\(\dfrac{a^2+b^2}{c^2+d^2}\)(đpcm)


Các câu hỏi tương tự
Vũ Minh Hằng
Xem chi tiết
Nguyễn Minh An
Xem chi tiết
Lương Đức Hưng
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
T-râm huyền thoại
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Dương Thị Song Thư
Xem chi tiết
nữ thám tử nổi tiếng
Xem chi tiết
Nhữ Thanh Hà
Xem chi tiết