Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Agami Raito

Cho a,b,c>0 . Tìm giá trị nhỏ nhất của biểu thức : \(P=\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\)

Nguyễn Việt Lâm
19 tháng 6 2020 lúc 5:41

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\) để dễ nhìn đặt \(\frac{b+c}{a}=x\)

\(\sqrt{\frac{1}{1+x^3}}=\frac{1}{\sqrt{\left(x+1\right)\left(x^2-x+1\right)}}\ge\frac{2}{x+1+x^2-x+1}=\frac{2}{x^2+2}=\frac{2}{\left(\frac{b+c}{a}\right)^2+2}\)

\(=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{2a^2}{2a^2+2b^2+2c^2}=\frac{a^2}{a^2+b^2+c^2}\)

Tương tự: \(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\) ; \(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)

Cộng vế với vế: \(P\ge\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra khi \(a=b=c\)


Các câu hỏi tương tự
Tuấn Kiệt
Xem chi tiết
Khánh Ngọc
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
nguyễn minh
Xem chi tiết
Nguyễn Văn Dũng
Xem chi tiết
jdgjgndrjj
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
bach nhac lam
Xem chi tiết