Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
jdgjgndrjj

Cho ba số thực a,b,c dương. CMR

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)

Cứu mk !!!!!!!!!!!

Lê Anh Duy
5 tháng 3 2019 lúc 14:32

Bài này có trong đề thi HSG 9 của huyện hay tỉnh nào đấy :)) được cái thầy t bắt cày đi cày lại cả chục cái đề thi nên bài này t nhớ lắm :))
Với x là số dương, áp dụng bđt Cô-si

\(\sqrt{x^3+1}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\le\frac{x+1+x^2-x+1}{2}=\frac{x^2+2}{2}\)

\(\Rightarrow\sqrt{\frac{1}{x^3}}\ge\frac{2}{x^2+2}\) (*)

Dấu (=) xảy ra khi x = 2

Áp dụng bđt (*)

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}=\frac{2a^2}{\left(b+c\right)^2+2a^2}\)

\(\Rightarrow\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{2a^2}{2\left(b^2+c^2\right)+2a^2}=\frac{a^2}{a^2+b^2+c^2}\left(1\right)\)

CMTT :

\(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\) (2)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\) (3)

Cộng vế với vế của (1) ; (2) ; (3) ; ta được ĐPCM


Các câu hỏi tương tự
nguyễn minh
Xem chi tiết
Tuấn Kiệt
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Võ Hồng Phúc
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Agami Raito
Xem chi tiết
bach nhac lam
Xem chi tiết
Nguyễn Minh Nguyệt
Xem chi tiết
bach nhac lam
Xem chi tiết