Ta có
\(M+3=\left(\frac{2b+3c+16}{1+6a}+1\right)+\left(\frac{6a+3c+16}{1+2b}+1\right)+\left(\frac{6a+2b+16}{1+3c}+1\right)\)
=> \(M+3=\left(6a+2b+3c+17\right)\left(\frac{1}{1+6a}+\frac{1}{1+2b}+\frac{1}{1+3c}\right)\)
=> \(M+3=28\left(\frac{1}{1+6a}+\frac{1}{1+2b}+\frac{1}{1+3c}\right)\ge28.\frac{9}{3+6a+2b+3c}=28.\frac{9}{14}=18\)
=> \(M\ge15\)
vậy MinM=15 khi \(a=\frac{11}{18};b=\frac{11}{6};c=\frac{11}{9}\)