Cho a, b, c > 0 và a + b + c = 4. Chứng minh b + c ≥ abc
Giải giùm mình mấy bài BPT này nha
a) Chứng minh: \(\dfrac{a+b}{2}\le\sqrt{\dfrac{a^2+b^2}{2}}\)
b) Cho a,b>0 chứng minh: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
c) Cho a+b\(\ge\)0 chứng minh: \(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)
d) Chứng minh: \(\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ac}{3}}\) ; \(a,b,c\ge0\)
e) Chứng minh: \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
Bài 1: Cho a, b, c > 0. Chứng minh:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
Bài 2:
a) Tìm GTLN của A = \(\dfrac{x^2}{x^4+x^2+1}\)
b) Tìm GTLN của B = xy biết 4x + 5y = 40
Bài 3: Cho a, b, c > 0. Chứng minh:
\(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
Bài 4: Cho m, n > 0. Chứng minh:
\(\dfrac{a^2}{m}+\dfrac{b^2}{n}\ge\dfrac{\left(a+b\right)^2}{m+n}\)
Cho a>b>c>0
Chứng minh a3b2+b
Trích đề thi HSG Thành phố Hồ Chí Minh 2003
Với a >c, b ≥ c , c > 0 . Chứng minh √c(a-c) + √c(b-c) ≤ √ab
cho a,b,c >0 thỏa mãn a.b.c=1. chứng minh rằng \(\dfrac{1}{a^3.\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3.\left(a+b\right)}>=\dfrac{3}{2}\)
Chứng minh bất đẳng thức
a/(a+b) + b/(b+c) + c/(c+a) >= 3/2 Với a >= b >= c > 0
Cho a>0, b>0, c>0 chứng minh bđt
(a+b+c) (1 trên a + 1 trên b + 1 trên c) ≥ 9
Cho x, y là hai số dương thõa mãn x+y=10
Tìm GTNN biểu thức S= 1 trên x + 1 trên y
Cho a > 0 , b > 0. Chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}>hoăc=\dfrac{4}{a+b}\)
Cho a,b,c >0 , chứng minh rằng
a) \(\frac{a^3}{b}\ge a^2+ab-b^2\)
b)\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)