\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
\(\Leftrightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}\le\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}+\frac{1}{a^2}-\frac{2}{ac}+\frac{1}{c^2}+\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\le0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{a}-\frac{1}{c}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{a}-\frac{1}{c}=0\\\frac{1}{b}-\frac{1}{c}=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\Rightarrow\Delta ABC\) đều
\(\Rightarrow\) Số đo 3 góc của tam giác đều bằng \(60^0\)