Hình tự vẽ nhé bạn:vv
a)+ Xét \(\Delta AKE\) và \(\Delta CKB\):
AK=CK(gt)
KE=BE (gt)
\(\widehat{AKE}=\widehat{CKB}\) (2 góc đối đỉnh)
=> \(\Delta AKE=\Delta CKB\left(c-g-c\right)\)
=> AE=CB(2 cạnh tương ứng) (1)
+ Xét \(\Delta AFI\) và \(\Delta BCI:\)
AI=BI(gt)
FI=CI(gt)
\(\widehat{AIF}=\widehat{BIC}\) (2 góc đối đỉnh)
=> \(\Delta AFI=\Delta BCI\left(c-g-c\right)\)
=> AF=BC (2 cạnh tương ứng) (2)
Từ (1) và (2) suy ra: AF=AE
Ta có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)
Mà \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{IAF}\left(\Delta IAF=\Delta IBC\right)\\\widehat{ACB}=\widehat{KAE}\left(\Delta KAE=\Delta KCB\right)\end{matrix}\right.\)
=> \(\widehat{IAF}+\widehat{BAC}+\widehat{KAE}=180^o\)
=> E, A, F thằng hàng.
=> Đpcm