1.Cho a,b,c ∈ℝ+ và abc = 1 Chứng minh rằng:
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
2: Cho a, b ,c là các số thực dương thỏa mãn abc = ab + bc + ca.
Chứng minh :\(\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}< \dfrac{3}{16}\)
(trích đề TS vào lớp 10 chuyên Toán Đại học Vinh 2002 – 2003)
Bài 3: Cho x,y là các số thực dương thỏa mãn x + y = 1.
Tìm GTNN của biểu thức A = \(\dfrac{1}{x^3+xy+y^3}+\dfrac{4x^2y^2+2}{xy}\)
4: Cho a, b, c là những số thực dương thỏa mãn a + b + c = \(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
Chứng minh rằng: \(ab+bc+ca\le3\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
Cho 3 số dương a, b, c thỏa mãn: ab+bc+ca=3. Chứng minh: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\)
cho ba số thực dương a, b, c thỏa mãn ab + bc + ca = 3. Chứng minh rằng: \(\dfrac{a^3}{b^2+3}+\dfrac{b^3}{c^2+3}+\dfrac{c^3}{a^3+3}\ge\dfrac{3}{4}\) help me!!!!
Bài 1:Cho các số dương x, y , z thỏa mãn : x\(^2\)+y\(^2\)+z\(^2\)≥1. CMR: \(\dfrac{x^3}{y}\)+\(\dfrac{y^3}{z}\)+\(\dfrac{z^3}{x}\)≥1
Bài 2: Cho xyz=1 va5 x+y+z = 3 . Tìm min của B= x\(^{16}\)+\(y^{16}\)+\(z^{16}\)
Bài 3: a,Cho ba số dương a , b ,c sao cho a+b+c =3 . cm
\(\dfrac{a}{b^3+ab}+\dfrac{b}{c^3+bc}+\dfrac{c}{a^3+bc}\) ≥ \(\dfrac{3}{2}\)
b, Cho ba số thực a, b , c không âm sao cho a+b+c=1
cm: b+c ≥ 16abc. Dấu đẳng thức xảy ra khi nào?
Bài 4: Gọi a,b,c là độ dài ba cạnh của một tam giác. Đặt p = \(\dfrac{a+b+c}{2}\). Chứng minh rằng nếu \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}=\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\) thì tam giác đó là tam giác đều
Cho a, b, c là các số thực dương thỏa mãn: a+b+c+ab+bc+ac=6. Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\)
Cho a, b, c là các số dương thỏa mãn: \(a^2+2b^2\le3c^2\). Chứng minh: \(\dfrac{1}{a}+\dfrac{2}{b}\ge\dfrac{3}{c}\)
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)