cho tg ABC AB>AC kẻ đg cao cao BM ,ON.
A. CM tg ABM đồng dạng tg ACN
B. cm AMN = ABC
C. lấy k thuộc AB sao cho BK =AC gọi E là trung điểm BC,F là trung điểm AK
cm EF song song tia phân giá Ax của BAC
cho tam giác ABC ( AB>AC)
a) kẻ đường cao BM, CN của tam giác ABC
chứng minh rằng: ΔABM đồng dạng với ΔACN ; độ lớn 2 góc AMN và ABC bằng nhau
b) Trên cạnh AB lấy điểm K sao cho BK=AC. Gọi E là trung điểm của BC, F là trung điểm AK.
Chứng minh rằng : EF song song với tia phân giác Ax của góc BAC
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
1.Cho tam giác \(ABC\left(AB< AC\right)\) , tia phân giác góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\) , cắt \(AC\) ở \(E\) . Chứng minh \(BD=CE\)
2.Cho tam giác \(ABC\) có \(AB< AC\) , \(D\) là một điểm nằm giữa \(A\) và \(C\) . Chứng minh rằng \(\Delta ABD=\Delta ACB\) và \(AB^2=AC.AD\)
Cho tam giác ABC vuông tại A; có AB<AC.M là trung điểm BC.Gọi D là điểm đối xứng với A qua M,E là điểm đối xứng với A qua đường thẳng BC.
a)Chứng minh AC=BD
b)Tứ giác BCDE là hình gì?
c)Gọi H là giao điểm AE và BC.Vẽ tia Ax song song Hd và cắt BC tại I.Chứng minh DI=EH
Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E. Chứng minh BD = CE ?
1,Cho tam giác ABC nhọn với H là trực tâm. Gọi M là trung điểm của BC. Các đường trung trực của AC và BC cắt nhau tại O. Chứng minh: AH = 2OM
2, Cho hình thang ABCD có đáy lớn là CD. Qua A kẻ đường thẳng AK song song BC ( K thuộc CD ). Qua điểm B kẻ đường thẳng BI song song AD ( I thuộc CD ). BI cắt AC tại F; AK cắt BD tại E. Chứng minh rằng:
a, EF song song AB
b, AB2 = CD.EF
Cho △ ABC . Trên cạnh BC lấy D sao cho \(\frac{DB}{DC}=\frac{1}{2}\). Đường thẳng qua D song song với AB cắt AC tại E , đường thẳng qua D song song với AC cắt AB tại F .
a) So sánh \(\frac{AF}{AB}và\frac{AE}{AC}\)
b) Gọi M là trung điểm của AC . Chứng minh EF // BM
cho tam giác ABC ,và trung tuyến AM .Phân giác ME của góc AMB cắt AB tại E phân giác MF của góc AMC cắt AC tại F
a, chứng minh EF//BC
b, gọi K là giao điểm của EF và AM,chứng minh I thuộc đường thẳng AM