Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Cho 3 số a,b,c thỏa mãn: \(\dfrac{a}{2017}=\dfrac{b}{2018}=\dfrac{c}{2019}\). Tính giá trị của biểu thức:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
Cho các số a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)
Tính giá trị của biểu thức \(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho a,b,c là số thực dương thỏa mãn
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Giá trị của biểu thức B=( 1+\(\dfrac{b}{a}\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
cho các số a,b,c khác thỏa mãn: \(\dfrac{a-b+c}{2b}=\dfrac{c-a+b}{2a}=\dfrac{a-c+b}{2c}\)
Tính giá trị của biểu thức P = \(\left(1+\dfrac{c}{b}\right).\left(1+\dfrac{b}{a}\right).\left(1+\dfrac{a}{c}\right)\)
Cho a, b, c thỏa mãn:
\(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-a\right)\left(b-c\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}=2013\)
Tính giá trị của biểu thức:
\(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\)
Câu 1:
Giá trị nhỏ nhất của biểu thức C là \(\frac{1}{3}\left(x-\frac{2}{5}\right)^2\) + |2y+1| - 2,5
Câu 2:
Cho 2 số x,y thỏa mãn (2x +1)2 + |y-1,2| = 0. Giá trị x,y?
Câu 3:
Giá trị x = __ thì biểu thức D = \(\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2\) - |8x -1| + 2016 đạt giá trị lớn nhất?
Câu 4:
Các số tự nhiên n thỏa mãn \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
Cách giải luôn nhé!
cho a,b,c là các số hữu tỉ khác 0 thỏa mãn:
\(\dfrac{a+b-2c}{c}=\dfrac{c+a-2b}{b}=\dfrac{b+c-2a}{a}\)
Tính giá trị của biểu thức
A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho a, b, c là ba số thực khác 0 thỏa mãn:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\) và \(a+b+c\ne0\)
Hãy tính giá trị của biểu thức \(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)