Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=k\)
=> \(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{a}=k^4\)
=> k = \(\pm\)1
Với k = 1 thì \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\Rightarrow a=b=c=d\)
=> P = 4
Với k = -1 thì \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=-1\) => \(\left\{{}\begin{matrix}a=-b\\b=-c\\c=-d\\d=-a\end{matrix}\right.\) => a = -b = c = -d
=> P = \(\dfrac{2a+a}{2a+a}+\dfrac{-2a-a}{-2a-a}+\dfrac{2a+a}{2a+a}+\dfrac{-2a-a}{-2a-a}=4\)
Vậy P luôn bằng 4.
