a) cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
i) \(\frac{a}{a+b}\frac{c}{c+d}\)
ii)\(\frac{a-b}{c-d}=\frac{a+c}{b+d}.\)
b) Cho: \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\). Chứng minh: \(\frac{a}{b}=\frac{c}{d}.\)
cho tỉ lệ thức: a,\(\frac{a+b}{c+d}\) = \(\frac{a-2b}{c-2d}\) (đk:b;d khác 0)
Chứng minh \(\frac{a}{b}\) = \(\frac{c}{d}\)
b, Cho a+d=b+c và a2 +d2 = b2 +c2 (b,d khác 0)
Chưng minh: 4 số a,b,c,d có thể lập thành 1 tỉ lệ thức
cho a,b,c,d >0 A=\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Tìm phần nguyên của A
1.cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). chứng minh
a)\(\frac{a+b}{b}=\frac{c+d}{d}\) b)\(\frac{a-b}{b}\)=\(\frac{c-d}{d}\)
c)\(\frac{a+c}{c}=\frac{b+d}{d}\) d)\(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Bài 1: Cho \(\frac{a}{b}=\frac{c}{d}\) .CM:
a) \(\frac{a^2}{a^2+b^2}=\frac{c^2}{c^2+d^2}\) b) \(\left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)
Bài 2: Cho 3 số a,b,c\(\ne\)0, sao cho a\(^2\)=bc. CM:
a) \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\) b)\(\left(\frac{c+2019a}{a+2019b}\right)^2=\frac{c}{b}\)
Bài 4: Cho a,b,c,d khác 0 sao cho b2=ac, c2=bd.CM: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
a)\(\frac{a+b}{b}=\frac{c+d}{d}\)
b)\(\frac{a-b}{b}=\frac{c-d}{d}\)
c)\(\frac{a+b}{a}=\frac{c+d}{c}\)
d)\(\frac{a-b}{a}=\frac{c-d}{c}\)
e)\(\frac{a}{a+b}=\frac{c}{c+d}\)
f)\(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho \(\frac{a}{b}=\frac{c}{d}.\) Và b+c+d khác 0. Chứng minh rằng \(\frac{a}{d}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
Giúp mình với mọi người : tìm các giá trị a,b,c biết :
\(a,2a=-3b\) và \(-3a+b\)
b, \(4a=7b,5b=8c\) và \(10a-5b+c=100\)
Bài 2 : tìm tỉ lệ thức
a, \(\frac{a+b}{a-b}\) = \(\frac{c+d}{c-d}\)
b, \(\frac{5a+2c}{5a+2d}=\frac{a-4c}{b-4d}\)