Ta có : \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-c\right)\)
Do : \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\) nên \(a^2+b^2+c^2-ab-bc-ac=0\)
Dễ dàng suy ra \(a=b=c\).Vậy \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}.\)
Ta có : \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-c\right)\)
Do : \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\) nên \(a^2+b^2+c^2-ab-bc-ac=0\)
Dễ dàng suy ra \(a=b=c\).Vậy \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}.\)
Câu 1: CMR : Nếu \(a^3+b^3+c^3=3abc\) thì \(a+b+c=0\) hoặc \(a=b=c\)
Câu 2: Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Tính \(\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Câu 3 : Cho \(a^3+b^3+c^3=3abc\left(a.b.c\ne0\right)\). Tính\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
1,Cho các số thực a,b,c thỏa mãn điều kiện : \(a^2+b^2+c^2=3\) và \(a+b+c+ab+ac+bc=6\).
Tính \(A=\frac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2014}}\)
2, Cho \(a,b,c\ne0\) thỏa mãn \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\),
Chứng minh : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{3}{4}+\frac{ab}{\left(a+b\right)\left(b+c\right)}+\frac{bc}{\left(b+c\right)\left(c+a\right)}+\frac{ca}{\left(c+a\right)\left(a+b\right)}\)
HELP ME....MAI MÌNH NỘP RỒI
mình cảm ơn
Cho a,b,c thỏa mãn \(a+b+c=\frac{1}{2}\); \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ne0\)
Giá trị của biểu thức \(P=\frac{2ab+c}{\left(a+b\right)^2}.\frac{2bc+a}{\left(b+c\right)^2}.\frac{2ac+b}{\left(a+c\right)^2}=?\)
1.Cho a+b+c =0 .Tính: M=a2+b2+c2-3abc
2.cho 3 số a,b,c khác 0 thỏa mãn a+b+c=3abc và a+b+c=0.
Tính N=(1+\(\frac{a}{b}\))(1+\(\frac{b}{c}\))(1+\(\frac{a}{c}\))
cho a,b,c là các số dương thỏa mãn : \(â^3+b^3+c^3=3abc\)
tính giá trị của biểu thức sau:
\(\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)\)
CMR :
a/\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b/\(a^3+b^3+c^3-3abc=\left(a+b+c\right).\left(a^2+b^2+c^2\right)-ab-bc-ca\)
Rút gọn phân thức sau:
a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
b) \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
Làm hộ mk 2 câu này nha! Mình cám mơn nhìu ạ!
1) CMR:
a. Nếu a3+b3+c3=3abc thì a+b+c=0
b. Nếu a+b+c=0 thì a3+b3+c3=3abc
2) Tìm m nguyên để
a. A=\(\frac{3m^2+7m+1}{m-3}\) nhận giá trị nguyên
b. B=\(\frac{\left(m-3\right)\left(m+1\right)-m}{m^2+2}\) nhận giá trị nguyên
3) Xác định a sao cho x4 +ax2+b chia hết cho x2 +x+1
4) Cho a+b = x+y, a2+b2= x2+y2.
CMR: a3+b3=x3+y3
5) Cho biểu thức
A= \(\frac{3+x}{3-x}\)\(\frac{x^2-6x+9}{9x^2}\)\(\left(\frac{3}{3-x}-\frac{9}{27+x^3}.\frac{x^2-3x+9}{3-x}\right)\)
a. Tìm x để A có nghĩa
b. Rút gọn biểu thức A
---------------- Mai phải nộp r, ai lm được thì giúp vs ạ T-T-----------------------
cho a,b>0 và a+b=1 Tìm Min của
a, A=\(\frac{1}{ab}+\frac{1}{a^2+b^2}\)
b,B=\(\frac{2}{ab}+\frac{3}{a^2+b^2}\)
c,C=\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
bài 2 Tìm Min
D=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) (a,b,c>0)