Cho (O;R) và 1 điểm A nằm ngoài đường tròn. Qua A kẻ các tiếp tuyến AM,AN với (O) (M,N tiếp điểm). Trên nửa mặt phẳng bờ AO chứa N vẽ cát tuyến ABC của (O) sao cho AB < AC, gọi I là trung điểm của BC, MN cắt AC tại K.
a) C/m AMOI là tứ giác nội tiếp.
b) C/m OA vuông góc với MN tại H và AK.AI=AM2
c) AO cắt (O) tại 2 điểm P,Q ( AP < AQ). Gọi D là trung điểm của HQ. Đường thẳng qua H và vuông góc với MD cắt MP tại E. C/m △MHE ∼ △QDM và P là trung điểm của ME.
Giúp mình với ạ, Cảm ơn!
Cho (O) và điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB, AC (B, C là tiếp điểm). Gọi OH cắt BC tại H.
a) C/m A, B,O, C cùng thuộc 1 đường tròn
b) Kẻ đường cao CD. Gọi AD cắt đường tròn tại E. Gọi I là trung điểm của ED. C/m 5 điểm A, B, I, O, C cùng thuộc 1 đường tròn
c) C/m BD // OA
d) C/m \(\Delta AHE\) đồng dạng \(\Delta ADO\)
e) C/m \(\Delta OHD\) đồng dạng \(\Delta ODA\)
Cho A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB,AC với đường tròn O có B,C là tiếp điểm
a)Cm AO vuông góc BC
b)Trên cung nhỏ BC lấy điểm M bất kì(M khác B,C,OA).Điểm M cắt AB và AC tại D và E.Cm chu vi tam giác ADE=2AB
c)Đường thẳng vuông góc AO tại O cắt AB,AC tại P và Q.CM 4PD.QE=PQ.PQ
Từ điểm A nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến AB, AC đến (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với (O) (D nằm giữa A và E). Gọi H là giao điểm của BC và OA
a) Cmr \(\Delta OHD\) đồng dạng với \(\Delta ODA\)
b) Cmr BC là tia phân giác của \(\widehat{DHE}\)
c) Từ D kẻ đường thẳng // BE cắt AB, AC lần lượt tại M, N. Cmr D là trung điểm của MN
Bài 3: Cho nửa đường tròn (O) đường kính AB và AC là một dây của nó. Kẻ tiếp tuyến Ax và kẻ đường phân giác của góc CAx cắt nửa đường tròn tại E và cắt BC kéo dài tại D. a/C/m: AABD cân. b/ C/m: OE // BD. c/Gọi I là giao điểm của AC và BE. C/m: DI ⊥ AB. d/Tính độ dài AE, biết AB = 2cm và BAC = 20°,
Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E). a) Chứng minh: bốn điểm A, B, O, C cùng thuộc một đường tròn. b) Chứng minh: OA BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA. c) Chứng minh BC trùng với tia phân giác của góc DHE. d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, BC lần lượt tại M và N. Chứng minh: D là trung điểm của MN
Từ điểm A nằm ngoài đường tròn ( O ) kẻ 2 tiếp tuyến AB và AC ( B , C là 2 tiếp điểm ) . Gọi D là trung điểm của AC , BD cắt đường tròn ( O ) tại M khác B
a ) Chứng minh : bốn điểm O, B , A , C cùng thuộc một đường tròn .
b ) Chứng minh : AD.DC = DM.DB
c ) Gọi H là giao điểm của BC và OA Lấy E đối xứng với H qua D . BE cắt OA tại F . Chứng minh : FB = FE .
Cho đường tròn (O;R). Từ A trên (O) kẻ tiếp tuyến (d) với O trên (d) lấy M bất kì (M≠A). Kẻ cát tuyến M,N,P. Gọi K là trung điểm của NP, kẻ tiếp tuyến MB, kẻ AC⊥MB, BD⊥MA. Gọi H là giao điểm của AC và BD; I là giao điểm của OM và AB. Chứng minh:
a) 5 điểm O,K,A,M,B cùng thuộc một đường tròn.
b) OI.OM=R2 và OI.IM=IA2
c) OAHB là hình thoi.