Cho biểu thức H = \(\left(\dfrac{a-3\sqrt{a}}{a-2\sqrt{a}-3}-\dfrac{2a}{a-1}\right)\): \(\dfrac{1-\sqrt{a}}{a-2\sqrt{a}+1}\) với a \(\ge\) 0, a \(\ne\) 1, a \(\ne\) 9
a) Rút gọn biểu thức H
b) Tìm a khi H = 2023
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
cho biểu thức A= \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a > 0
a) rút gọn biểu thức
b) tính giá trị nhỏ nhất của A.
cho biểu thức P= \(\left(\frac{a\sqrt{a}+1}{a-1}-\frac{a-1}{\sqrt{a}-1}\right):\left(\sqrt{a}-\frac{\sqrt{a}}{\sqrt{a}-1}\right)\) với a > 0; a khác 1
a) rút gọn biểu thức
b) tính giá trị của P khi a = 3-2\(\sqrt{2}\)
Cho biểu thức: A = \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a) Rút gọn A.
b) Tìm a để A = 2.
Cho biểu thức A = \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a, Rút gọn A
b, Tìm GTNN của A
Cho biểu thức: \(P=1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a) Rút gọn P
b) Cho \(P=\frac{\sqrt{6}}{1+\sqrt{6}}\). Tìm giá trị của a. Chứng minh rằng P > \(\frac{2}{3}\)
Rút gọn biểu thức : O = \(\frac{\sqrt{a^2}\left(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\right)}{\sqrt{a^2}-2a+1}\)
Cho biểu thức P=\(\frac{2a^2+4}{1-a^3}-\frac{1}{1+\sqrt{a}}-\frac{1}{1-\sqrt{a}}\)
a. Tìm đkxđ
b. Rút gọn biểu thức P
Cho biểu thức
P= \(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}-\frac{1-a}{a-\sqrt{a}}\)
a, Rút gọn P
b, tìm số nguyên dương a để P là số nguyên