\(A=\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
\(\Leftrightarrow\dfrac{1}{x^2+2x+x+2}+\dfrac{1}{x^2+2x+3x+6}+\dfrac{1}{x^2+3x+4x+12}+\dfrac{1}{x^2+4x+5x+20}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}\left(1\right)\)
a, ĐKXĐ của pt :
\(\left\{{}\begin{matrix}x+1\ne0\\x+2\ne0\\x+3\ne0\\x+4\ne0\end{matrix}\right.\) và \(x+5\ne0\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne-2\\x\ne-3\\x\ne-4\end{matrix}\right.\) và \(x\ne-5\)
b, pt(1) \(=\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}\)
\(=\dfrac{1}{x+1}-\dfrac{1}{x+5}\)
\(=\dfrac{x+5-x-1}{\left(x+1\right)\left(x+5\right)}\)
\(=\dfrac{4}{x^2+6x+5}\)
c, Thay x = 3 vào bt trên ,có :
\(\dfrac{4}{3^2+6.3+5}=\dfrac{4}{32}=\dfrac{1}{8}\)
Vậy tại ..............
d, Để \(A=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{4}{x^2+6x+5}=\dfrac{1}{3}\)
\(\Leftrightarrow x^2+6x+5=12\)
\(\Leftrightarrow x^2+6x-7=0\)
\(\Leftrightarrow x^2-7x+x-7=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\left(t/m\right)\\x=-1\left(kot/m\right)\end{matrix}\right.\)
Vậy x = 7 thì A = 1/3