Cho a, b, c > 0 thỏa mãn a + b +c =3
Chứng minh : \(\dfrac{a}{b^2+1}\)+\(\dfrac{b}{c^2+1}\)+\(\dfrac{c}{a^2+1}\) \(\ge\) \(\dfrac{3}{2}\)
Cho a,b,c là 3 số dương và \(\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{2}{b}\)
Chứng minh rằng:\(\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}\ge4\)
Chứng minh bất đẳng thức :
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\) với a,b,c > 0
Cho a,b,c là các số thực thoả mãn:a+b+c=1. Chứng minh rằng:
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{a+ab}{a+b}\ge2\)
a) Chứng minh rằng số n2 +2014 với n nguyên dương không là số chính phương.
b) Cho a, b là các số dương thỏa mãn a3 + b3 = a5 + b5.
Chứng minh rằng: a2 + b2 ≤ 1 + ab
Đi qua đi lại mấy anh giúp em
Cho a , b là các số thực dương thỏa mãn a + b = 4 . Tìm giá trị nhỏ nhất của biểu thức
\(P=\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{a^3+1}}\)
Cho \(a,b,c,d>0\). Chứng minh \(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)
Cho \(a,b,c\in N\)* và \(x+y+z=5\) ; \(S_1=\dfrac{b}{a}x+\dfrac{c}{a}z\) ; \(S_2=\dfrac{a}{b}x+\dfrac{c}{b}y\) ; \(S_3=\dfrac{a}{c}z+\dfrac{b}{c}y\). Chứng minh \(S_1+S_2+S_3\ge10\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh :
a) \(\dfrac{a.c}{b.d}=\dfrac{a^2-c^2}{b^2-d^2}\)
b) \(\dfrac{a^2}{b^2}=\dfrac{3a^2-2ac}{3b^2-2bd}\)