Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tạ Uyên

Cho a, b, c là các số thực không âm thỏa mãn \(a^2+b^{2^{ }}+c^{2^{ }}=3\). Tìm giá trị nhỏ nhất và lớn nhất của P = a+ b+ c3.

 

Tạ Uyên
12 tháng 2 2022 lúc 11:44

Giúp mình bài này với ah.

Akai Haruma
12 tháng 2 2022 lúc 11:59

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$a^3+a^3+1\geq 3a^2$

$b^3+b^3+1\geq 3b^2$

$c^3+c^3+1\geq 3c^2$

$\Rightarrow 2(a^3+b^3+c^3)+3\geq 3(a^2+b^2+c^2)$

$\Leftrightarrow 2P+3\geq 9$

$\Leftrightarrow P\geq 3$

Vậy $P_{\min}=3$ khi $(a,b,c)=(1,1,1)$

----------------

Tìm max:

$a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2\leq 3$

$\Rightarrow a,b,c\leq \sqrt{3}$

Do đó: $a^3-\sqrt{3}a^2=a^2(a-\sqrt{3})\leq 0$

$\Rightarrow a^3\leq \sqrt{3}a^2$

Tương tự với $b,c$ và cộng theo vế:

$P\leq \sqrt{3}(a^2+b^2+c^2)=3\sqrt{3}$
Vậy $P_{\max}=3\sqrt{3}$ khi $(a,b,c)=(\sqrt{3},0,0)$ và hoán vị. 


Các câu hỏi tương tự
Tạ Uyên
Xem chi tiết
Tạ Uyên
Xem chi tiết
 Huyền Trang
Xem chi tiết
Tạ Uyên
Xem chi tiết
Tạ Uyên
Xem chi tiết
Tạ Uyên
Xem chi tiết
tiến vũ lớp 9 đàm
Xem chi tiết
Con Bò Nguyễn
Xem chi tiết
Bich Hong
Xem chi tiết