Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh Hiền

Cho a, b, c > 0 và a + b + c = 3. Tìm GTNN của biểu thức \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

Trần Thanh Phương
6 tháng 8 2019 lúc 11:31

\(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

\(A=\Sigma\left(a-\frac{ab^2}{1+b^2}\right)\)

Áp dụng bất đẳng thức Cô-si :

\(A\ge\Sigma\left(a-\frac{ab^2}{2b}\right)=\Sigma\left(a-\frac{ab}{2}\right)\)

\(=\left(a+b+c\right)-\left(\frac{ab+bc+ca}{2}\right)\)\(\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)


Các câu hỏi tương tự
Không Bít
Xem chi tiết
Nguyễn Thị Nguyệt Ánh
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
thảo phương
Xem chi tiết
tran thi mai anh
Xem chi tiết
Bí Mật
Xem chi tiết