Chứng minh: \(a^3+b^3+c^3=3abc\) thì a+b+c=0 hoặc a=b=c. Áp dụng cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị của biểu thức: \(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Cho a,b,c khác 0 ,a+ b +c=0
Chứng minh :\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)Tính giá trị biểu thức P=\(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}\)
Chứng minh rằng nếu x + y + z = 0 thì x3 + y3 + z3 = 3xyz
Áp dụng tính giá trị biểu thức \(M=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\) biết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
1.Giải phương trình sau: [x-2015] + [2x-2016]= x-2017
2. Cho ba số thực a,b,c khác nhau thỏa mãn: \(a+\frac{2020}{b}=b+\frac{2020}{c}=c+\frac{2020}{a}\). Chứng minh rằng \(a^2+b^2+c^2=2020^3\)
3. Cho a,b,c là số dương thỏa mãn a+b+c=9. Chứng minh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
4. Chứng minh bất đẳng thức sau vớ a,b,c là các số dương: \(\left(a+b+c\right)\times\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
5. Cho a >0, b >0, c >0. Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
Cho a, b, c > 0 và a + b + c + ab + bc + ca = 6abc. Chứng minh rằng
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) ≥ 3
Cho a, b, c > 0 và a+ b+ c= 3. Chứng minh:\(\frac{a}{ab+b^3}+\frac{b}{bc+c^3}+\frac{c}{ca+a^3}\ge\frac{3}{2}\)
cho a,b,c đôi một khác nhau tt/m:
\(a^3+b^3+c^3=3abc\left(abc\ne0\right)\)
chứng minh p=\(\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}=0\)
Cho các số thực dương a ; b; c . tìm giá trị nhỏ nhất của biểu thức
D=\(\frac{a^3+2}{ab+13}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\)
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)