\(3a^2+3b^2=10ab\Leftrightarrow\left(3a^2-9ab\right)+\left(3b^2-ab\right)=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
Do \(a>b>0\Rightarrow3a-b>0\Rightarrow a=3b\)
\(P=\frac{a-b}{a+b}=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)