Cho \(a^3+b^3+c^3=3abc\). Rút gọn \(P=\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
1) cho các số a,b,c dương thỏa mãn \(a^3+b^3+c^3=3abc\). CMRa=b=c
2) cho x,y,z thỏa mãn xyz=1 và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). Tính A=\(x^{2018}+2019^y-z^x\)
3) Cho \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}.CMR\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
Bài 13: Biết \(a\ne-b;b\ne-c;c\ne-a\). CMR:
\(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{a-b}{a+b}\)
cho 3 số dương thỏa mãn a+b+c=3. Chứng minh rằng\(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)
( mình chọn chủ đề linh tinh nhá :V vì ko có )
1, Cho a + b = 2
Tính a2 + b2 + 6ab
2, Tìm a, b sao cho a2 + b2 - ab - a - b + 1 = 0
3, Cho x + y = x2 + y2 = x3 + y3
Tìm x, y
4, Cho ab + bc + ca = 1
Rút gọn: P = \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}-\frac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
5, Cho P = x3 + y3 + 3xy là số nguyên tố, x và y \(\in N\). Tìm x,y
cho \(\left(a+b+c\right)^2=a^2+b^2+c^2\) a,b,c khác 0
Chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.Tìm x:
\(\left(x-1\right)^3+\left(2x+1\right)^3+\left(x+2\right)^3=3\left(x-1\right).\left(2x+1\right).\left(x+2\right)\)
2. Cho \(a+b+c=0\) . C/m: \(a^3+b^3+c^3=3abc\)
3. Tìm x:
a, \(\left(x+1\right)^3+\left(2x-3\right)^3+\left(2-3x\right)^3=0\)
b, \(\left(2x+1\right)^3+\left(x+2\right)^3=27\left(x+1\right)^3\)
Tính
a/ \(\left(x-3\right)\left(x^2+3x+9\right)\)
b/ \(\left(x-2\right)\left(x^2+2x+4\right)\)
c/ \(\left(x+4\right)\left(x^2-4x+16\right)\)
d/ \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
e/ \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)
f/ \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
Rút gọn rồi tính giá trị biểu thức :
a) \(A=\left(x+3\right)^2+\left(x-3\right).\left(x+3\right)-2.\left(x+2\right).\left(x-4\right)\); với x = \(-\frac{1}{2}\)
b) \(B=\left(3x+4\right)^2-\left(x-4\right).\left(x+4\right)-10x\); với x = \(-\frac{1}{10}\)
c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3.\left(x-2\right).\left(x+2\right)\); với x = 1
d) \(D=\left(x-3\right).\left(x+3\right)+\left(x-2\right)^2-2x.\left(x-4\right)\); với x = -1