Tính
a/ \(\left(x-3\right)\left(x^2+3x+9\right)\)
b/ \(\left(x-2\right)\left(x^2+2x+4\right)\)
c/ \(\left(x+4\right)\left(x^2-4x+16\right)\)
d/ \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
e/ \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)
f/ \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-3\right)\left(x^2+x\cdot3+3^2\right)\)
\(=x^3-3^3=x^3-27\)
b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x-2\right)\left(x^2+x\cdot2+2^2\right)\)
\(=x^3-2^3=x^3-8\)
c) Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=\left(x+4\right)\left(x^2-x\cdot4+4^2\right)\)
\(=x^3+4^3=x^3+64\)
d) Ta có: \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2+x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
e) Ta có: \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)
\(=\left(x^2-\frac{1}{3}\right)\left[\left(x^2\right)^2+x^2\cdot\frac{1}{3}+\left(\frac{1}{3}\right)^2\right]\)
\(=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3\)
\(=x^6-\frac{1}{27}\)
f) Ta có: \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\frac{1}{3}x\cdot2y+\left(2y\right)^2\right]\)
\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\frac{1}{27}x^3+8y^3\)