xyz=1
=>x=1,y=1,z=1
Thay x=1,y=1,z=1 vào P ta được:
P=(119-1)(15-1)(11890-1)=0
xyz=1
=>x=1,y=1,z=1
Thay x=1,y=1,z=1 vào P ta được:
P=(119-1)(15-1)(11890-1)=0
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
cho x,y,z\(\ne\)0 thỏa mãn x+y+z=xyz và\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2018\)
tnh P=\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Cho: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\) và x+y+z=xyz (x, y, z khác 0). CM: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=2\)
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
Cho các số x, y, z, t thỏa mãn xyzt=1. Tính P=\(\dfrac{x}{xyz+xy+x+1}+\dfrac{y}{yzt+yz+y+1}+\dfrac{z}{xzt+zt+z+1}+\dfrac{t}{xyt+tx+t+1}\)
cho các số thực dương x,y,x thỏa mãn x+y≤z. CMR: \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{27}{2}\)
CHO xyz=1. TÍNH \(E=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\)
Cho x, y, z thỏa mãn: x + y + z = 7; x2 + y2 + z2 = 23; xyz = 3
Tính giá trị : A= \(\dfrac{1}{xy+z-6}+\dfrac{1}{yz+x-6}+\dfrac{1}{zx+y-6}\)