Vũ Minh TuấnBăng Băng 2k6Phạm Lan HươngNguyễn Việt Lâm No choice teentthNguyễn Thanh HằngHo Nhat MinhNguyễn Văn ĐạtHo Nhat MinhNguyễn Thị Thùy Trâm
Bạn thử gọi số nguyên tố có dạng là : 3k +1 và 3k+1 ( với k>0 ).
Vũ Minh TuấnBăng Băng 2k6Phạm Lan HươngNguyễn Việt Lâm No choice teentthNguyễn Thanh HằngHo Nhat MinhNguyễn Văn ĐạtHo Nhat MinhNguyễn Thị Thùy Trâm
Bạn thử gọi số nguyên tố có dạng là : 3k +1 và 3k+1 ( với k>0 ).
cho a,b,c là các số nguyên thỏa mãn:\(a^3+b^3=5\left(c^3-11d^3\right)\)
Chứng minh rằng : a+b+c+d chia hết cho 3
1.Tìm số tự nhiên n để phân số\(\dfrac {7n-8}{2n-3}\) đạt giá trị lớn nhất
2.Cho đa thức p(x) = \(ax^{3}+bx^{2}+cx+d \) với a,b,c,d là các hệ số nguyên. Biết rằng, p(x) chia hết cho 5 với mọi x nguyên . Chứng minh rằng a,b,c,d đều chia hết cho 5
3.Gọi a,b,c là độ dài các cạnh của một tam giác. chứng minh rằng:\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} <2\)
Cho đa thức P(x) = \(a\cdot x^3+b\cdot x^2+c\cdot x+d\) . Trong đó, các hệ số a, b, c, d là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 5 với mọi giá trị nguyên của x. Chứng minh rằng a, b, c, d đều chia hết cho 5.
1) Tìm số tự nhiên n để phân số \(\dfrac{7n-8}{2n-3}\)có giá trị lớn nhất
2) Cho đa thức p ( x) = a3+bx + cx + d với a, b, c, d là các hệ số nguyên . Biết rằng p( x ) \(⋮\)5 với mọi x nguyên
Chứng minh rằng : a, b, c , d đều chia hết cho 5
3) Gọi a, b, c là độ dài các cạnh cảu 1 tam giác . Chứng minh rằng \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
Cho đa thức: \(F\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c,d là các số nguyên. Biết rằng với mọi giá trị nguyên của x thì giá trị của đa thức đều chia hết cho 5.Chứng minh a,b,c,d đều chia hết cho 5
\(\text{cho 4 số a; b; c;d thỏa mãn a/b=2/3; b/c=4/5; c/d=6/7. khi đó a/b/c/d=...}\)
Cho đa thức: \(F\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c là các số nguyên. Biết rằng với mọi giá trị nguyên của x thì giá trị của đa thức đều chia hết cho 5. Chứng minh a,b,c,d đều chia hết cho 5
Bài 1: Chứng minh rằng: Nếu 6x+ 11y chia hết cho 31 thì x + 7y chia hết cho 31; x , y thuộc Z
Bài 2: Cho a, b thuộc Z ( a khác 0, b khác 0)
Chứng minh rằng: Nếu a chia hết cho b và b chia hết cho a thì a = b, a = -b
Bài 3: Tìm n thuộc Z sao cho:
a, n2 + 3n - 13 chia hết cho n + 3
d, n2 + 3 chia hết cho n - 1
Cho đa thức P(x) = ax3 + bx2 + cx + d có các hệ số a, b, c, d nguyên.
Biết P(x) chia hết cho 5 với mọi số nguyên x. Chứng minh: a; b; c; d chia hết cho 5