\(P>=\dfrac{\left(a+b+c\right)^2}{a\sqrt{b+c}+b\sqrt{a+c}+c\sqrt{a+b}}\)
\(\left(a\sqrt{b+c}+b\sqrt{a+c}+c\sqrt{a+b}\right)^2< =\left(a+b+c\right)\left(2ab+2cb+2ac\right)\)
=>\(P>=\dfrac{\left(a+b+c\right)\sqrt{a+b+c}}{\sqrt{2\left(ab+ac+cb\right)}}\)
Đặt a+b=S; ab=T(T<=S^2/4)
=>c=(4-S)/(P+1)
=>S<=4
(a+b+c)>=ab+bc+ac
=>\(S+\dfrac{4-S}{P+1}>=P+\dfrac{S\left(4-S\right)}{P+1}\)
=>P(P+1-S)<=(S-2)^2
P+1-S<=0
=>VT<=0<=VVP
P+1-S>0
=>P(P+1-S)<=S^2/4(S^2/4+1-S)
=>P(P+1-S)<=S^2/16*(S-2)^2<=(S-2)^2
=>a+b+c>=ab+ac+bc
=>\(P>=\dfrac{a+b+c}{\sqrt{2}}\)