Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
_ĐừNg_HỏI_TạI_SaO_

Cho 2 số M và N: M gồm 2n chữ số 1; N gồm n chữ số 4

CMR: M + N + 1 là 1 số chính phương

soyeon_Tiểubàng giải
5 tháng 9 2016 lúc 10:46

Ta có: M + N + 1 = 111...1 + 444...4 + 1

                             (2n c/s 1)(n c/s 4)

= 111...1 x 1000...0 + 111...1 + 111...1 x 4 + 1

 (n c/s 1)   (n c/s 0)    (n c/s 1) (n c/s 1)

= 111...1 x (1000...0 + 1 + 4) + 1

  (n c/s 1)   (n c/s 0)

= 111...1 x 1000...05 + 1

  (n c/s 1)  (n-1 c/s 0)

= 111...1 x 3 x 333...35 + 1

  (n c/s 1)      (n-1 c/s 3)

= 333...3 x 333...35 + 1

   (n c/s 1) (n-1 c/s 3)

= 333...3 x 333...34 + 333...3 + 1

  (n c/s 3)  (n-1 c/s 3) (n c/s 3)

= 333...3 x 333...4 + 333...34

 (n c/s 3) (n-1 c/s 3) (n-1 c/s 3)

= 333...342 là số chính phương (đpcm)

  (n-1 c/s 3)

Isolde Moria
5 tháng 9 2016 lúc 10:47

 

Ta chứng minh được 

\(\overline{aaa....a}\) ( n số a)

\(=\frac{\left(10^n-1\right)}{9}.a\)

\(\Rightarrow M+N+1=\frac{\left(10^{2n}-1\right)}{9}+\frac{\left(10^n-1\right)}{9}.4+1\)

\(\Rightarrow M+N+1=\frac{\left(10^{2n}-1\right)+\left(10^n-1\right)4+9}{9}\)

\(\Rightarrow M+N+1=\frac{10^{2n}-1+4.10^n-4+9}{9}\)

\(\Rightarrow M+N+1=\frac{10^{2n}+4.10^n+4}{9}\)

\(\Rightarrow M+N+1=\frac{\left(10^n\right)^2+2.10^n.2+2^2}{9}\)

\(\Rightarrow M+N+1=\frac{\left(10^n+2\right)^2}{9}\)

\(\Rightarrow M+N+1=\left[\frac{\left(10^n+2\right)}{3}\right]^2\)

Mặt khác  \(10^n+2=100...02\) ( n - 1 ) số 0

Tổng chữ số \(=1+0\left(n-1\right)+2=3⋮3\)

=> \(10^n+2⋮3\)

=> \(\frac{\left(10^n+2\right)}{3}\in N\)

\(\Rightarrow\left[\frac{\left(10^n+2\right)}{3}\right]^2\) là số chính phương

=> M+N+1 là số chình phương


Các câu hỏi tương tự
Hoàng Trần Lan Chi
Xem chi tiết
Ánh Dương Hoàng Vũ
Xem chi tiết
Edogawa Conan
Xem chi tiết
Thái Đào
Xem chi tiết
snkk
Xem chi tiết
Thái Đào
Xem chi tiết
...Kho Câu Hỏi...
Xem chi tiết
Kirigaya Kazuto
Xem chi tiết
Linh Lê
Xem chi tiết