Làm
Để (d1) và (d2)
a, (d1) và (d2) cắt nhau thì a\(\ne a'\) \(\Leftrightarrow3\ne m-1\Leftrightarrow m\ne4\)
Giả sử A là điểm mà (d1) và (d2) cắt nhau trên Ox thì A(x';0)
\(\Rightarrow\) 0= 3x' -1 \(\Leftrightarrow x'=\frac{1}{3}\)
Thay x' = \(\frac{1}{3}\) và y' =0 vào (d2) ta có:
0=(m-1)\(\frac{1}{3}+2\)
\(\Leftrightarrow m=-5\left(tm\right)\)
Kl:...
b, Giả sử (d1) và (d2) cắt nhau tại B thuộc góc phần tư thứ 1 thì B(x';y') với x',y'>0
\(\Rightarrow y'=3x'-1=\left(m-1\right)x'+2\)
\(\Leftrightarrow x'\left(4-m\right)=3\Leftrightarrow x'=\frac{3}{4-m}\left(v\text{ì}m\ne4\right)\)
\(\Rightarrow y'=\frac{m+5}{4-m}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{3}{4-m}>0\\\frac{m+5}{4-m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\m+5>0\end{matrix}\right.\Leftrightarrow-5< m< 4\left(tm\right)\)
Kl:.....