Viết công thức của hàm số y=f(x) biết rằng y tỉ lệ thuận với x theo hệ số tỉ lệ 1/4
a. Tìm x để f(x)=-5
b. Chứng tỏ rằng nếu x1 > x2 thì f(x1) > f(x2)
Viết công thức của hàm số y=f(x) biết rằng y tỉ lệ thuận vs x theo hệ số tỉ lệ 1/4
a) Tìm x để f(x) = -5
b) Chứng tỏ rằng nếu x1 > x2 thì f(x1) > f(x2)
cho hàm số y=f(x)=ax(a khác 0) với mọi x thuộc tập hợp số hữu tỉ
. Chứng minh a, f(x1+x2)=f(x1)+f(x2)
b, Chứng mình f(kx)=kf(x) (k khác 0)
c,Tìm a để f(x1)×f(x2)=f(x1×x2)
help me please@Băng Băng 2k6,@Vũ Minh Tuấn,@Akai Haruma
Cho hàm số f(x) xác định với mọi x khác 0 thỏa mãn
a, f(1)=1
b, \(f(\dfrac{1}{x}\))=\(\dfrac{1}{x^2}.f(x)\)
c, f(x1+x2)=f(x1)+f(x2) với mọi x1,x2khác 0 và x1+x2 khác 0
C tỏ rằng \( f(\dfrac{5}{7}\))=\(\dfrac{5}{7}\)
Bài toán 2. Tính tỉ số , biết:
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
làm ơn giúp mình
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3
+ ...+ xn.x1 = 0 thì n chia hết cho 4.
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3
+ ...+ xn.x1 = 0 thì n chia hết cho 4.
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3
+ ...+ xn.x1 = 0 thì n chia hết cho 4.