cho mk đính chính câu này nha
a,\(x\sqrt{\dfrac{2}{5}}=\sqrt{\dfrac{2x^2}{5}}\)
b,\(ab\sqrt{\dfrac{a}{b}}=a\sqrt{\dfrac{ab^2}{b}}=a\sqrt{ab}\)
cho mk đính chính câu này nha
a,\(x\sqrt{\dfrac{2}{5}}=\sqrt{\dfrac{2x^2}{5}}\)
b,\(ab\sqrt{\dfrac{a}{b}}=a\sqrt{\dfrac{ab^2}{b}}=a\sqrt{ab}\)
Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):
a. \(\sqrt{18\left(\sqrt{2}-\sqrt{3}\right)^2};\)
b. \(ab\sqrt{1+\dfrac{1}{a^2b^2}};\)
c. \(\sqrt{\dfrac{a}{b^3}+\dfrac{a}{b^4}};\)
d. \(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\)
Khử mẫu của biểu thức lấy căn:
\(ab\sqrt{\dfrac{a}{b}};\dfrac{a}{b}\sqrt{\dfrac{b}{a}};\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}};\sqrt{\dfrac{9a^3}{36b}};3xy\sqrt{\dfrac{2}{xy}}.\)
(Giả thiết các biểu thức có nghĩa).
rút gọn
\(\sqrt{18\left(\sqrt{2}-\sqrt{3}\right)^2}\)
\(ab\sqrt{1+\dfrac{1}{a^2b^2}}\)
\(\sqrt{\dfrac{a}{b^3}+\dfrac{a}{b^4}}\)
\(\dfrac{a+\sqrt{ab}}{\sqrt{a+\sqrt{b}}}\)
trục mẫu
a, \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}\)
b, \(\sqrt{\dfrac{x}{y^3}+\dfrac{x}{y^4}}\)
c, \(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
Chứng minh đẳng thức:
\(\dfrac{a\sqrt{b}+b}{a-b}.\sqrt{\dfrac{ab+b^2-2\sqrt{ab^2}}{a\left(a+2\sqrt{b}+b\right)}}\left(\sqrt{a}+\sqrt{b}\right)=b\) (với a > b > 0)
chứng minh : \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}}-\sqrt{ab}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)
Bài 1: Tính:
\(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
Bài 2: Rút gọn rồi tính:
a) A=\(\dfrac{a^4-4a^2+3}{a^4-12a^2+27},a=\sqrt{3}-\sqrt{2}\)
b) \(B=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}},h=3\)
c) \(C=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}x+2},x=2\left(\sqrt{3}+1\right)\)
d) \(D=\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right),a=\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
Mọi người giúp em với!!!!!!!!!!!!!!
Rút gọn biểu thức
\(a.\dfrac{\sqrt{5}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{2\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
\(b.x\sqrt{2x+2}+\left(x+1\right)\sqrt{\dfrac{2}{x+1}}-4\sqrt{\dfrac{x+1}{2}}\)
a) \(\dfrac{\sqrt{15}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}\)
b) \(\dfrac{5\sqrt{2}-2\sqrt{5}}{10}\)