Vì \(Ou\perp Ov\) nên giả sử PTĐT Ou và Ov lần lượt là : \(y=kx;y=-\dfrac{1}{k}x\) ( \(k\ne0\) )
Giả sử \(Ou;Ov\cap\left(E\right)\) lần lượt tại M ; N
Xét PTHĐGĐ của Ou và \(\left(E\right)\) là no của pt : \(\dfrac{x^2}{a^2}+\dfrac{k^2x^2}{b^2}=1\)
\(\Leftrightarrow\dfrac{x^2\left(b^2+k^2a^2\right)}{a^2b^2}=1\) \(\Leftrightarrow x_M^2=\dfrac{a^2b^2}{b^2+k^2a^2}\)
Thấy : \(OM^2=x_M^2+y_M^2=x_M^2\left(1+k^2\right)=\dfrac{a^2b^2}{b^2+k^2a^2}\left(k^2+1\right)\)
Suy ra : \(\dfrac{1}{OM^2}=\dfrac{b^2+k^2a^2}{a^2b^2\left(k^2+1\right)}\)
Tương tự , ta có : \(\dfrac{1}{ON^2}=\dfrac{b^2+\dfrac{1}{k^2}a^2}{a^2b^2\left(\dfrac{1}{k^2}+1\right)}=\dfrac{b^2k^2+a^2}{a^2b^2\left(1+k^2\right)}\)
Suy ra : \(\dfrac{1}{OM^2}+\dfrac{1}{ON^2}=\dfrac{\left(a^2+b^2\right)\left(k^2+1\right)}{a^2b^2\left(k^2+1\right)}=\dfrac{a^2+b^2}{a^2b^2}\) ko đổi do a ; b ko đổi
Gọi H là h/c của O lên MN ; ta có : \(\dfrac{1}{OH^2}=\dfrac{1}{OM^2}+\dfrac{1}{ON^2}=\dfrac{a^2+b^2}{a^2b^2}\)
\(\Rightarrow OH^2=\dfrac{a^2b^2}{a^2+b^2}\Rightarrow OH=\dfrac{ab}{\sqrt{a^2+b^2}}\) ko đổi ( a > b > 0 )
Vì OH \(\perp\) MN nên MN luôn tiếp xúc với \(\left(O;\dfrac{ab}{\sqrt{a^2+b^2}}\right)\) cố định ( đpcm )