Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)
Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-5\right)^2+\left(y-3\right)^2=4\) và điểm \(A\left(1;2\right)\), một đường thẳng d đi qua A và cắt đường tròn (C) theo một dây cung MN có độ dài bằng \(2\sqrt{3}\). Viết phương trình của d ?
Viết phương trình đường thẳng \(\left(\Delta\right)\) vuông góc với đường thẳng \(\left(d\right):x+y+6=0\) và \(\left(\Delta\right)\) cắt đường tròn \(\left(C\right):\left(x+2\right)^2+\left(y-1\right)^2=25\) tại hai điểm M và N sao cho \(S_{\Delta IMN}=\dfrac{25}{2}\) ( biết \(I\) là tâm đường tròn )
Cho đường tròn \(\left(C\right):\left(x+1\right)^2+\left(y-2\right)^2=25\) và điểm \(A\left(3;0\right)\). Viết phương trình đường thẳng \(\left(\Delta\right)\) qua \(A\) và cắt đường thẳng \(\left(C\right)\) theo dây cung \(MN\) sao cho:
a) \(MN\) lớn nhất
b) \(MN\) nhỏ nhất
Cho hai điểm \(A\left(3;-1\right);B\left(-1;-2\right)\) và đường thẳng d có phương trình \(x+2y+1=0\)
a) Tìm tọa độ điểm C trên đường thẳng d sao cho tam giác ABC là tam giác cân tại C
b) Tìm tọa độ của điểm M trên đường thẳng d sao cho tam giác AMB vuông tại M
Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là \(\left(-\sqrt{3};0\right)\) và đi qua điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\)
a) Hãy xác định tọa độ các đỉnh của (E)
b) Viết phương trình chính tắc của (E)
c) Đường thẳng \(\Delta\) đi qua tiêu điểm thứ hai của elip (E) và vuông góc với trục Ox và cắt (E) tại hai điểm C và D. Tính độ dài đoạn thẳng CD ?
Trong mặt phẳng tọa độ Oxy, cho elip (E) : \(\dfrac{x^2}{4}+y^2=1\) và điểm \(A\left(-1;\dfrac{1}{2}\right)\). Gọi d là đường thẳng đi qua A có hệ số góc là m. Xác định m để d cắt (E) tại hai điểm phân biệt M, N sao cho A là trung điểm của MN ?
Trong mặt phẳng tọa độ Oxy, cho hai đường tròn :
\(\left(C_1\right):x^2+y^2+10x=0\)
\(\left(C_2\right):x^2+y^2-4x-2y-20=0\)
có tâm lần lượt là I, J
a) Viết phương trình đường tròn (C) đi qua các giao điểm của \(\left(C_1\right),\left(C_2\right)\) và có tâm nằm trên đường thẳng \(d:x-6y+6=0\)
b) Viết phương trình tiếp tuyến chung của \(\left(C_1\right),\left(C_2\right)\). Gọi \(T_1,T_2\) lần lượt là tiếp điểm của \(\left(C_1\right),\left(C_2\right)\) với một tiếp tuyến chung, hãy viết phương trình đường thẳng \(\Delta\) qua trung điểm của \(T_1T_2\) và vuông góc với IJ
Trong mặt phẳng tọa độ Oxy, cho hai đường tròn :
\(\left(C_1\right):\left(x-2\right)^2+\left(y-2\right)^2=4\)
\(\left(C_2\right):\left(x-5\right)^2+\left(y-3\right)^2=16\)
a) Chứng minh rằng hai đường tròn \(\left(C_1\right),\left(C_2\right)\) cắt nhau
b) Tìm tọa độ giao điểm của hai tiếp tuyến chung của \(\left(C_1\right)\) và \(\left(C_2\right)\)
Trong mặt phẳng Oxy, cho tam giác ABC có AB = AC, \(\widehat{BAC}=90^0\), trung điểm của BC là M(1; -1) và trọng tâm tam giác ABC là \(G\left(\dfrac{2}{3};0\right)\)
a) Tìm tọa độ điểm A
b) Tìm tọa độ điểm B và C
c) Viết phương trình đường tròn ngoại tiếp tam giác ABC